Final Report for Southern Region Small Fruit Consortium

PROJECT TITLE:
Development of a web-interface for grape and apple regional risk assessment system (2013-E04)

PRINCIPAL INVESTIGATOR:
Mizuho Nita
Grape Plant Pathologist
AHS Jr. AREC; Virginia Tech
595 Laurel Grove Road
Winchester, VA 22602
Phone: (540) 869-2560
FAX: (540) 869-0862
Email: nita24@vt.edu

Collaborators:

Keith Yoder
Professor
AHS Jr. AREC; Virginia Tech
595 Laurel Grove Road
Winchester, VA 22602
Phone: (540) 869-2560
FAX: (540) 869-0862
Email: ksyoder@vt.edu

Peter Sforza
Research Associate and VirginiaView Coordinator
Department of Geography
Center for Geospatial Information Technologies
eCorridors Program
Virginia Tech
113 Major Williams Hall
Blacksburg, VA 24061-0115
Phone: (540) 231-1867
Email: sforza@vt.edu

Seth Peery
Senior GIS Architect
Enterprise GIS Research and Development Administration
Virginia Tech
Phone: (540) 231-2178
Email: sspeery@vt.edu

Paul Knight
Department of Meteorology
605 Walker Building
University Park, PA 16802
Telephone (814) 863-1842
E-mail: pgk2@psu.edu

Erick DeWolf
Extension Plant Pathologist
Department of Plant Pathology
Kansas State University
4607 Throckmorton Plant Sci. Center
Manhattan, KS 66506
(785) 532-3968
dewolf1@ksu.edu

A) OBJECTIVES
1) Development of web-interface for apple and grape risk assessment system

B) Project executive summary:
Our group has been working to develop a web-based grape and apple disease risk assessment system, which utilizes regional level weather information to evaluate risks of major diseases of grape and apple. We envision that in the future, it will be a component of risk assessment system where it will provide aids for IPM that will be tailored to the specific conditions for each grower. I.e., The system will provide a report of grape or apple disease risk snap-shot that includes history and forecast of disease risk at the site of interest, provide site-specific information based on user inputs, and maps will be generated to support areas that is not covered by existing weather stations.

The funding from SRSFC was requested as a part of a large project, where we proposed was to establish a framework for the disease risk assessment system (Table 1). Due to the leave of two key personnel in 2013-
Table 1. Proposed Objectives from the Original Proposal

<table>
<thead>
<tr>
<th>Phase</th>
<th>Timeline</th>
<th>Objective</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Development of the base system</td>
<td>2009-2013</td>
<td>1 Creating the infrastructure: a) Set up a data server; b) Create a web interface; c) Data management</td>
<td>Establish a weather data sharing structure between PSU and VT system</td>
</tr>
<tr>
<td>A) Disease risk assessment system (proposed here)</td>
<td></td>
<td>2 Initial development of grape disease risk assessment tool 2009-2011: Selection of candidate models based on previous studies (on-going as of 2009 season) 2010-2012: Initial system run: testing and calibration of GIS modules, a hindcast of disease risks with existing datasets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Public deployment of the alpha system of disease maps (2013)</td>
<td></td>
</tr>
</tbody>
</table>

Materials and Methods

The work created this year had two main facets: 1) the “Fruit Disease Risk Forecasting System” (FDRFS) and the 2) “Geo-spatial Content Management System” (GeoCMS). The FDRFS is a web application which fulfilled the project goals of collecting remotely sensed weather data, running predictive fungal risk models based on that data, and providing a web portal for viewing and downloading weather data, summary reports, and disease risk model predictions. The FDRFS was built to collect data from Campbell Scientific weather station sensors (we currently have 9 weather stations in the state), and employed pathogen risk models written in Python (Table 2).

The GeoCMS was the backend framework upon which the FDRFS was built. As with any Content Management System (CMS), the GeoCMS provides a flexible web-based interface for aggregating content (in this case environmental data), providing for user login and access permissions management, flexible reporting capabilities, and page development tools. The GeoCMS extends the traditional CMS by supporting geospatial data types (point, line, polygon, etc), and also sophisticated geospatial analysis query capabilities. It also supports the creation of a monitoring and analysis framework such as this by supplying a robust data structure tailored to the needs of environmental monitoring for relating location information, monitoring stations properties, quantitative and qualitative parameter data, time series data and linkages amongst the various spatial and non-spatial components. Currently, we are working on mapping solution for the various grape disease risk models for GeoCMS. Scripts were written to obtain weather data and convert it into raster data for mapping, and data are stored to be exported out to GeoCMS.

The next step is to stream the raster data into the GeoCMS to have map display and create a set of scripts to do it automatically. We have established collaboration with Pennsylvania State University (Mr. Kyle Imhoff, the state climatologist for PA) in April 2015 to achieve this goal. We are expecting to see the data to be exported to our system in early 2016. In addition, we are planning to have import function for the FDRFS so that grower can upload their own weather data. This “crowd sourcing” of weather data will enhance our network of weather data.
GIS Risk Models

Description of the model

- *The selection of candidate disease models:* the selection was made based on past usage (i.e., popularity among scientists and growers) and availability (Table 2)

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>Disease risk criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botrytis model 1 (Nair and Allen 1993)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I = I_{max} \cdot \left[1 - \exp\left(-\frac{Q - t}{K_{temp}}\right)^2\right])</td>
<td>Tmin 5, Tmax 30, Imax 100, Topt 20.8, Ktime 13.9, Ktemp 8.9</td>
<td>IF 0 ≤ I < 20 then Risk_{bot} = low
IF 20 ≤ I < 50 then Risk_{bot} = Moderate
IF I ≥ 50 then Risk_{bot} = high</td>
</tr>
<tr>
<td>where (Q = \exp\left(-\frac{(T_{obs} - T_{opt})}{K_{exp}}\right)^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and (t = LW_{obs})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powdery Mildew model 1 (Sall 1979)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PT = \begin{cases} 0 & \text{if } T_{obs} \leq 0 \ 0.000241 \cdot T_{obs}^{2.06737} \cdot (35 - T_{obs})^{0.72859} & \text{if } 0 < T_{obs} < 35 \ 0 & \text{if } T_{obs} \geq 35 \end{cases})</td>
<td></td>
<td>IF 0 ≤ PT < 0.2 then Risk_{PM} = low
IF 0.2 ≤ PT < 0.5 then Risk_{PM} = Moderate
IF PT ≤ 0.5 then Risk_{PM} = high</td>
</tr>
<tr>
<td>Black Rot model 1 (based on Spotts 1977)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (T_{obs} < 10) then Risk_{BR} = low
IF (T_{obs} > 10) then (Y = 6.61616027 - 0.0358765 \cdot T_{obs} + 0.0920909 \cdot (T_{obs} - 21.0556)^2 - 0.0039294 \cdot (T_{obs} - 21.0556)^3)</td>
<td></td>
<td>IF LW_{obs} > Y then Risk_{BR} = high
Else if Risk_{BR} = low</td>
</tr>
<tr>
<td>Phomopsis model 1 (Erincik et al 2003)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Y = \alpha \cdot r^{\beta} \cdot \left(1 - r^{\gamma} \cdot W_{obs}^{\epsilon_{\gamma}}\right))</td>
<td>alpha 2.04, beta 3.47, gamma 4.86, epsilon 1.6, Tmin 5, Tmax 35</td>
<td>IF 0 ≤ y < 0.07 then Risk_{phom} = low
IF 0.07 ≤ PT < 0.15 then Risk_{phom} = Moderate
IF PT ≤ 0.15 then Risk_{phom} = high</td>
</tr>
<tr>
<td>Where (r = (T - T_{min})/(T_{max} - T_{min}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Web-interface

In 2015, we published our web-interface to the selected users who agreed to evaluation systems performance. The current system requires a log in from the user, which enable us to provide tailored disease risk information for each growers (Fig. 1).

Figure 1. “GrapeIPM.org” for hosting weather data, as well as providing daily grape disease risk information: “Fruit Disease Risk Forecasting System” (FDRFS), Log in page
When a user logs in for the first time, he/she will choose a station (or stations) of interest, and then after that, the home screen will display weather information (average, max, and min temperature, average RH, total hours of leaf wetness, and total precipitation in the past 24 hours), and disease risk information from the past 5 days (Fig. 2). In addition, the users can see the risk of each disease in the past 24 hours as a map display. In addition, the user will have an access to past weather data (Fig. 3).

Figure 2 User page for “Fruit Disease Risk Forecasting System” (FDRFS). Weather and recent disease risk information is shown on the left hand side “station information” window, and also, you can see the risk of each disease in the past 24 hours on the map display on the right hand side.
Conclusions, Discussions, and Impacts

We have successfully created a framework for future grape and apple disease risk assessment system by obtaining detailed weather data, and converting them into several grape disease risk assessment models utilizing database and geo-spatial technologies. In the mid-2015, we have published our new website (grapeIPM.org) to tier 1 and 2 groups for evaluation. Currently, we are adding more features to the website so that it will serve as a portal for grape and apple disease management.

By processing weather information properly, this risk assessment system can provide summarized information of the risk of disease development with an easy to understand color-coded graph and map displays (Fig. 2). One of the purposes of the system is to provide an aid for fungicide and bactericide applications. Currently, we are working on the interface and new database structure where both weather and fungicide application record information can be displayed for growers, so that the user can make better decisions. However, it is not our intention to have a system that will replace traditional fungicide recommendation programs. Instead, it will help educate growers to take another look at weather information, which is a major driving force of plant disease development. By doing so, this risk assessment system will help growers make a better decision when they refer to the fungicide recommendation programs. Some growers have been implementing weather monitoring equipment in their orchards and vineyards. For them, this system will serve as additional information to confirm their decision making. Many others may not have funds to purchase weather monitoring equipment, or they may think they do not have time to examine weather data to assess disease risks. For those growers, this system serves as an aid for their decision making which they did not have an access before.

Benefits of this system are not limited to the money and time saved by growers at the time of pesticide application. Precisely applied fungicide application can increase an efficacy of disease prevention, which leads to increase in quality and quantity of the yield (Madden et al., 2007). In addition, the impact on the environment should not be discounted. Excessively applied fungicide will be a threat to growers’ (and their neighbors’) health, and it has an impact on the environment through chemical drifts and run-offs. Moreover, the reduced use of fungicide will act as a preventative measure for the pesticide resistance development of pathogen populations.
Populations of both powdery and downy mildew pathogens of grape resistant to the QoI fungicide in Virginia have been documented (Baudoin et al, 2008), and apple powdery mildew and apple scab also has developed resistance to the QoI (Sallato 2006), and potentially DMI (Koller 2005). Use of this risk assessment system could reduce the use of the vulnerable fungicides, and it may prolong the product life of these fungicides. Considering the cost, time, and effort put into a fungicide development, also the potential concern on the public health, the impact of the risk assessment system is very high.

Having such a system will also benefit extension specialists and agent. State-wide information will help extension personnel to make recommendations to growers; especially if the field of the question is far from the office of the extension personnel, which is not uncommon in many of southern states. This system also provides a resource to other research and extension opportunities by collecting valuable weather information throughout Virginia and place into a dedicated server that can be accessible by specialists. The availability of weather information and the flexibility of the modular system will allow other projects to take advantage of the system with ease. The data obtained in this project will be shared with others, and the database will be valuable for many disciplines. For example, this system can be adapted to predict the emergence of insects, such as grape berry moth (Tobin et al., 2001), which is based on a seasonal heat accumulation. Furthermore, it can be combined with existing mapping effort such as Virginia’s vineyard suitability maps (Boyer 2000) to provide a more comprehensive picture of the viticulture in VA.

There are several challenges that have been addressed. One is the availability of the weather information at the local level. The RTMA technology is very sophisticated and suitable for creating maps. For example, the USDA’s ipmPIPE system for soybean rust and other diseases uses the very similar technology; however, its grid is 5 km square. Some users may feel the resolution is not high enough. To provide more information, the proposed system incorporates data from weather stations across the state of Virginia; however, these stations are scattered around and some growers may not find the one close to their vineyard. In order to resolve this issue, we have contacted another pest-management weather database (www.uspest.org), and granted a permission to use their resources. We have a link for our weather station data to their website since 2014. We are also planning to submit some of models to them.

Another challenge is the continuous funding. Often, many disease risk assessment efforts only last while funds are available, presumably due to high running cost. We would like to have a system that can run cost efficiently, so that the risk of termination of the service is minimal at the end of the funding cycle. The proposed system will be designed to be as automated as possible once the system is built. Thus, it should require relatively low cost to build a system, and it will require very small maintenance in terms of both cost and time in a long run. The weather data acquisition has been automated, and the disease model module were built independent of the system so that modification in disease risk assessment models can be made without affecting the whole system. Thus, once the system is established, cost associated for the maintenance of the system will be minimal, what required yearly will be fees for weather station maintenance and costs for data storage.
References

Ellis, M. A., 2005. Midwest Grape Production Guide. The Ohio State Extension Bulletin 919, Columbus, OH.

Madden, L. V., Hughes, G., and van den Bosch, F. 2007. The study of plant disease epidemics, APS press, St. Paul, MN.

Appendix I

Table 1. A timeline of the proposed disease information systems and its impact (*original*)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Timeline</th>
<th>Objective</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Development of the base system</td>
<td>2009-2013</td>
<td>1 Creating the infrastructure: a) Set up a data server; b) Create a web interface; c) Data management</td>
<td>Establish a weather data sharing structure between PSU and VT system</td>
</tr>
<tr>
<td>II Initial runs</td>
<td>2009-2014</td>
<td>1 Validation of models by comparing model outputs with actual observations in the fields</td>
<td>– Student education</td>
</tr>
<tr>
<td>III Public deployment</td>
<td>2013-2016</td>
<td>1 System deployment and feedback: a) System maintenance and evaluation, b) Conduct survey to obtain user comments and suggestions; c) Continuation of validation of models and weather stations</td>
<td>– More extended collaboration among faculties and institutions</td>
</tr>
<tr>
<td>IV Value addition</td>
<td>2011-2016</td>
<td>1 Toward more comprehensive information system for grape management; 1) Implementation of other disease risk maps (Pierce's disease forecast, grape leafroll virus distribution map, etc); 2) Establish links to existing disease databases (e.g., ipmPIPE products) and other information sources; 3) Establish apple disease module which is another important fruit crop in VA</td>
<td>– Extension education beyond mid-Atlantic grape and apple production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Expansion of the system beyond VA and plant pathology: 1) Continuation of the validation of the system; 2) Expansion of the system to other states; 3) Consult viticulturists and entomologists for application of the system; 4) Expansion of the system beyond grape plant pathology.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix II
A copy of poster presented at 2012 GEOINT Symposium in Orlando, FL (October 8 – 11, 2012).

Selected Project: Grape Disease Forecasting

CGIT is creating a predictive model to assess blight risks in grapes. The model considers blossom, canker, shoot, and trauma blight conditions to show infection risks (low to high) to determine risks two days in advance using forecasted weather information.

The model will generate hourly risk prediction rasters to determine when the symptoms of blights would occur. This can help growers to make decisions on the need for blight-preventive measures.